Машинное обучение для абсолютных новичков. Вводный курс, изложенный простым языком
Теобальд О.1 100 р.0 отзывов
В наличии
Купить
наличие в магазинах
ID товара:
10299050 (ЦБ-00178760)
ISBN:
978-5-04-190305-3
Масса:
458 г
Размеры:
24.2 x 17 x 1.65
Год издания:
2024
Объём:
208 страниц
Обложка:
Твердая бумажная
Бумага:
Офсетная
Возрастное ограничение:
12+
Описание:
Практическое и подробное введение в машинное обучение.
Простые и понятные объяснения и отсутствие необходимости опыта программирования делают эту книгу прекрасной альтернативой академическому учебнику. Здесь представлены основные алгоритмы машинного обучения (ML), которые сопровождаются наглядными примерами и практическими работами. Также вы узнаете про перекрестную проверку, ансамблевое моделирование, поиск по сетке для настройки моделей, проектирование функций, горячее кодирование и многое другое.
Для разработки интеллектуальных машин в первую очередь надо понять классическую статистику, так как алгоритмы на ее основе — это сердце машинного обучения. Написание кода — еще одна неотъемлемая часть ML, которая предусматривает управление данными. Однако материал этого руководства можно освоить даже без навыков программирования.
Возможно, с чтения этой книги начнется ваш путь к получению работы в области машинного обучения, а может быть, она просто удовлетворит ваше любопытство.
Внутри руководства:
• Загрузка бесплатных наборов данных.
• Методы очистки данных, включая горячее кодирование, группирование и обработку недостающих данных.
• Подготовка данных для анализа.
• Линейный регрессионный анализ.
• Кластеризация, включая кластеризацию k-средних.
• Основы работы нейронных сетей.
• Смещение/дисперсия для улучшения модели машинного обучения.
• Деревья решений для декодирования классификации.
• Ваша первая модель машинного обучения с помощью Python.
Об авторе
ОЛИВЕР ТЕОБАЛЬД — технический писатель, специализирующийся на темах искусственного интеллекта, финансовых технологий и облачных вычислений. Автор книг Python for Absolute Beginners, Machine Learning with Python for Beginners, Data Analytics for Absolute Beginners и др.
Читать далее...
Простые и понятные объяснения и отсутствие необходимости опыта программирования делают эту книгу прекрасной альтернативой академическому учебнику. Здесь представлены основные алгоритмы машинного обучения (ML), которые сопровождаются наглядными примерами и практическими работами. Также вы узнаете про перекрестную проверку, ансамблевое моделирование, поиск по сетке для настройки моделей, проектирование функций, горячее кодирование и многое другое.
Для разработки интеллектуальных машин в первую очередь надо понять классическую статистику, так как алгоритмы на ее основе — это сердце машинного обучения. Написание кода — еще одна неотъемлемая часть ML, которая предусматривает управление данными. Однако материал этого руководства можно освоить даже без навыков программирования.
Возможно, с чтения этой книги начнется ваш путь к получению работы в области машинного обучения, а может быть, она просто удовлетворит ваше любопытство.
Внутри руководства:
• Загрузка бесплатных наборов данных.
• Методы очистки данных, включая горячее кодирование, группирование и обработку недостающих данных.
• Подготовка данных для анализа.
• Линейный регрессионный анализ.
• Кластеризация, включая кластеризацию k-средних.
• Основы работы нейронных сетей.
• Смещение/дисперсия для улучшения модели машинного обучения.
• Деревья решений для декодирования классификации.
• Ваша первая модель машинного обучения с помощью Python.
Об авторе
ОЛИВЕР ТЕОБАЛЬД — технический писатель, специализирующийся на темах искусственного интеллекта, финансовых технологий и облачных вычислений. Автор книг Python for Absolute Beginners, Machine Learning with Python for Beginners, Data Analytics for Absolute Beginners и др.
Другие книги серии:
Цена в интернет-магазине может отличаться от цены в магазинах сети. Оформление книги может отличаться от представленного на сайте.
С этим товаром рекомендуем
Создание персонажей в Photoshop. Полное руководство по цифровому рисованиюЭКСМО
1 900 р.Объектно-ориентированное программирование с помощью PythonКальб И.
1 400 р.100 принципов гейм-дизайна. Универсальные принципы разработки и решения проблемДеспейн В.
2 000 р.Изучаем React. 2-е изданиеЧиннатамби К.
1 600 р.Общество контроля. Как сохранить конфиденциальность в эпоху тотальной слежкиФасман Д.
1 100 р.
Описание:
Практическое и подробное введение в машинное обучение.
Простые и понятные объяснения и отсутствие необходимости опыта программирования делают эту книгу прекрасной альтернативой академическому учебнику. Здесь представлены основные алгоритмы машинного обучения (ML), которые сопровождаются наглядными примерами и практическими работами. Также вы узнаете про перекрестную проверку, ансамблевое моделирование, поиск по сетке для настройки моделей, проектирование функций, горячее кодирование и многое другое.
Для разработки интеллектуальных машин в первую очередь надо понять классическую статистику, так как алгоритмы на ее основе — это сердце машинного обучения. Написание кода — еще одна неотъемлемая часть ML, которая предусматривает управление данными. Однако материал этого руководства можно освоить даже без навыков программирования.
Возможно, с чтения этой книги начнется ваш путь к получению работы в области машинного обучения, а может быть, она просто удовлетворит ваше любопытство.
Внутри руководства:
• Загрузка бесплатных наборов данных.
• Методы очистки данных, включая горячее кодирование, группирование и обработку недостающих данных.
• Подготовка данных для анализа.
• Линейный регрессионный анализ.
• Кластеризация, включая кластеризацию k-средних.
• Основы работы нейронных сетей.
• Смещение/дисперсия для улучшения модели машинного обучения.
• Деревья решений для декодирования классификации.
• Ваша первая модель машинного обучения с помощью Python.
Об авторе
ОЛИВЕР ТЕОБАЛЬД — технический писатель, специализирующийся на темах искусственного интеллекта, финансовых технологий и облачных вычислений. Автор книг Python for Absolute Beginners, Machine Learning with Python for Beginners, Data Analytics for Absolute Beginners и др.
Простые и понятные объяснения и отсутствие необходимости опыта программирования делают эту книгу прекрасной альтернативой академическому учебнику. Здесь представлены основные алгоритмы машинного обучения (ML), которые сопровождаются наглядными примерами и практическими работами. Также вы узнаете про перекрестную проверку, ансамблевое моделирование, поиск по сетке для настройки моделей, проектирование функций, горячее кодирование и многое другое.
Для разработки интеллектуальных машин в первую очередь надо понять классическую статистику, так как алгоритмы на ее основе — это сердце машинного обучения. Написание кода — еще одна неотъемлемая часть ML, которая предусматривает управление данными. Однако материал этого руководства можно освоить даже без навыков программирования.
Возможно, с чтения этой книги начнется ваш путь к получению работы в области машинного обучения, а может быть, она просто удовлетворит ваше любопытство.
Внутри руководства:
• Загрузка бесплатных наборов данных.
• Методы очистки данных, включая горячее кодирование, группирование и обработку недостающих данных.
• Подготовка данных для анализа.
• Линейный регрессионный анализ.
• Кластеризация, включая кластеризацию k-средних.
• Основы работы нейронных сетей.
• Смещение/дисперсия для улучшения модели машинного обучения.
• Деревья решений для декодирования классификации.
• Ваша первая модель машинного обучения с помощью Python.
Об авторе
ОЛИВЕР ТЕОБАЛЬД — технический писатель, специализирующийся на темах искусственного интеллекта, финансовых технологий и облачных вычислений. Автор книг Python for Absolute Beginners, Machine Learning with Python for Beginners, Data Analytics for Absolute Beginners и др.
Нашли ошибку в описании?
Сообщите пожалуйста нам и мы устраним её в ближайшее время.